

IMOLA software specifications
and development

process documentation

Integration of Maintenance Operations and Logistics Activities

Version Date Author Comments
1.0 Augustus 29, 2018 Ben Vermeulen Initial version with user requirements, scope, early

version of architecture layer diagram

1.1 September 24, 2018 Ben Vermeulen Revised architecture, extended description of use case
flows, early version of technical challenges and data
structure

1.2 October 9, 2018 Ben Vermeulen Updates layer diagrams, extended class diagram based
on tests with software implementation

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

2

Contents
1 Introduction ... 4

2 Software Development Plan .. 5

2.1 Scope ... 5

2.2 Process approach & deliverables .. 5

2.3 Development environment ... 6

2.4 Software Test Plan ... 6

3 Requirements specification ... 8

3.1 Software functionality ... 8

3.2 Usage/ usage context .. 8

3.2.1 “Insight in sensibility of tactical asset rescheduling” .. 8

3.2.2 “Optimization of tactical asset rescheduling” ... 8

3.2.3 “Determine usage pattern of (redundant) components” ... 9

3.2.4 When to use either one of the two functions of the scheduler? 9

3.2.5 Enhanced component degradation simulator ... 9

3.3 Interface specification ... 10

4 Design specification ... 11

4.1 Architecture ... 11

4.2 Deployment viewpoint/ user environment ... 13

4.3 Main use cases and flow-of-events ... 14

4.3.1 Maintenance of the asset and component repositories ... 14

4.3.2 Maintenance of the scheduling project .. 15

Creating, opening a project ... 15

Edit the asset pool of the project ... 15

4.3.3 Conduct tactical (redundant) component usage scheduling .. 16

4.3.4 Conduct tactical asset pool scheduling ... 16

4.3.5 Import external data ... 17

4.4 Design technical changes .. 17

4.4.1 Separation of concerns into two modules in the MaSeLMa API 17

4.4.2 Revise three-application solution for resource planning? .. 17

4.4.3 Operating mode issues: user-own operating mode labels, consider tasks, add flags .. 18

4.4.4 Integrate and enhance tactical planning ... 18

4.4.5 Obtaining external data ... 18

4.4.6 Extension & integration of ProSeLo API .. 19

4.5 Data structure design .. 19

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

3

4.5.1 Human actions for data in-/ output .. 19

4.5.2 Data lake .. 20

4.5.3 Scheduling project ... 20

4.5.4 Pass-through .. 20

4.6 User Interface Design .. 20

4.7 Class Diagrams ... 21

4.8 Use Case Realizations: concurrency .. 21

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

4

1 Introduction
This document lays down the software development process of the IMOLA maintenance and

resource planning application building upon the MaSeLMa application and integrating the ProSeLo

API. Where the previous MaSeLMa and ProSeLo schedulers offer decision support for the

operational maintenance schedule only, the IMOLA application offers decision support at the

tactical level by using previously written APIs for operational planning under the hood. The planning

is tactical in the sense that the user specifies tactical goals on the maintenance schedule and the

application now finds an operating schedule/ asset usage that minimizes the lower cost and/ or

higher availability subject to reaching those goals. Typical examples of tactical planning goals are, e.g.

throttling usage of a diesel engine to have its major overhaul maintenance coincide with a

mandatory vessel inspection or assigning printing jobs to have preventive replacement of laser heads

coincide with a readily planned visit of a maintenance engineer to the factory.

In particular, the integrated application is designed to focus on two different types of tactical

planning: (1) asset pool scheduling and (2) component usage planning, all subject to given

maintenance constraints. The next chapter will provide extensive details on what we mean with both

terms.

From the outset, we seek to develop a planning application that can be used in different sectors, but

above all the maritime sector and the mid- to high-tech sector. There are substantial commonalities

from the perspective of tactical planning; in all of these sectors there are arrays/ pools of assets and

tasks/ usage may be scheduled to the various assets so as to tune the moments of maintenance. That

said, though, there are also major differences with regard to ownership of the (arrays of) capital

goods and (legal) responsibility for maintenance of these goods. For instance, in several high-tech

sectors, asset owners have only one machine such that ‘usage throttling’ is not an option (other than

changing the order of particular jobs, which may not very often possible). It may also be that service

contracts are signed and that planning of usage and maintenance are not attuned, or maintenance is

subject to usage constraints (which is merely operational planning). As such, we design the

application for usage, first and foremost, in the maritime sector, particularly because of the interest

of several parties, but also because it is the more generic case (with more than 1 operating mode,

spare part delivery limitations, variable maintenance costs, etc.). However, we also target providing

tactical planning for immobile capital goods as well, albeit at lower priority.

With regard to integration of resource planning, we have to recognize that the IMOLA project is too

short to be able to incorporate all relevant resources (e.g. maintenance staff, tools, spare parts).

Moreover, the complexity of incorporating all these resources in scheduling is a formidable task

requiring a thorough scientific study first. That said, the IMOLA development team seeks to further

integrate the MaSeLMa demonstrator setup in which the MaSeLMA GUI used SPMS.

The IMOLA project has a mere 5 months running time and limited budget mostly spent on developing

additional software functionality which further increases the level of technology and business

readiness with implementation at several pilot companies in mind.

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

5

2 Software Development Plan

2.1 Scope
In the IMOLA project, an integrated maintenance & resource planning application is provided,

notably providing tactical decision support. There are now two different types of tactical planning

requested by the pilot companies:

1. Tactical asset pool scheduling (APS) for two (or more) assets in the asset pool. One of the

pilot companies wants to know whether and, if so, when and of which assets to swap the

operating schedules to advance/ postpone a mandatory preventive maintenance to a

particular interval. An alternative perspective on this is that a list of tasks is to be assigned to

an array of assets, and the scheduler assigns operating tasks to assets to advance/ postpone

maintenance of the assets.

2. Tactical component usage scheduling (CUS) for two (or more) (redundant) components of a

single asset. The scheduler ‘throttles’ usage of particular components during particular

operating intervals. Two of the pilot companies want to do so to advance/ postpone a

mandatory preventive maintenance to a particular interval.

The IMOLA application is to provide a tactical maintenance & resource planning that is –within its

constraints- operationally both feasible and near-optimal. To this end, the operational scheduler is

used for each considered & compared tactical scenario, such that the operational solutions are

(near-)optimal; this prevents comparing a poor operational solution in one scenarios with a top

operational solution in another. In addition to that, the operational scheduler may still use the

Gordian’s Spare Part Maintenance Studio (SPMS) to integrate spare part costs and constraints.

One major, possibly very valuable extension currently considered out of scope of IMOLA is that

allowing component usage scheduling in lower iterations of the tactical asset pool scheduling would

give much more freedom to the asset pool scheduler.

The existing MaSeLMa GUI is extended to provide the APS (asset pool scheduling) and CUS

(component usage scheduling) functionality. However, in deliberation with a panel of representatives

of the pilot companies, we may decide to alter the MaSeLMA GUI to tuck away rarely used

rudimentary functionality (e.g. operational scheduler functionality). In addition to that, it may be

decided to make the GUI more user friendly (e.g. dragging tasks on a timeline rather than

meticulously defining intervals), and providing a simple “dashboard” with tactical implications for

further managerial decision making. The “HOWs and WHATs” are to be decided during the project.

Please note that integrating the ProSeLo API as planning module requires several additional

developments in the GUI (e.g. conversion of input and output, visualization of output, etc.), in the

project structure of the MaSeLMa API (retaining initialization settings and solutions), and of course

functionality in the ProSeLo API.

2.2 Process approach & deliverables
Given the close range to the user and the aim to develop a pilot deliverable / demonstrator, we

follow an incremental, iterative development process akin to scrum. Hereby, there are not only

frequent meetings with the development team but also frequent test & feedback sessions with the

pilot customers to allow for the necessary scrum volatility.

It is proposed to do bi- or triweekly meetings with the three developers in which the past sprint is

reviewed, new functionality tested (see the section on the Software Test Plan), documentation

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

6

consolidated, and new sprints (re)defined. For each new sprint, sufficient time is to be allocated to

discuss program-technical challenges, design and functionality scoping issues, process obstacles, user

requirements, and, ultimately, design & functionality decisions. For this, the project manager

functions as scrum master.

The project deliverables are specified in Figure 1 (for a detailed description, see the Project Proposal

document). Deliverable 3, 4, 5, 6, and 7 require software development. The Gantt chart also shows

during which months these software development activities take place.

Figure 1. Gantt chart of project activities

Several of the deliverables are discuss in this document, see the table below.

Deliverable Note

Functional specifications This document

Consortium building & knowledge dissemination -

Basic demonstrator Discussed in this document

Pilots at first line companies Mentioned in this document

Implement basic version at Loodswezen -

Advanced demonstrator Discussed in this document

Implement at Loodswezen -

Knowledge dissemination -

“Follow up”-plan

2.3 Development environment
Both Felipe and Bas develop stand-alone modules and the integration/ communication is to be done

in the application. Given the different ‘modules’ in the architecture and the distributed

responsibilities, each of the developers has its own ‘stack’. See the table below.

 Ben Felipe Bas

IDE Visual Studio Express Visual Studio Express

Language C# Python C#

Source control Yet to be decided. Given the size of the project we may do without

2.4 Software Test Plan
The IMOLA team follows a quasi-scrum approach with the developers. Given that each developer has

its own specialization and works on separate modules and given the absence of a Quality Assurance

department, developers have to evaluate/ test functionality of other developers. During the bi- or

triweekly developer meetings, it is proposed to take one or two hours to discuss past developments,

reflect on API or GUI implementations, test functionality (against preliminary documentation), and

discuss (re)designs. Clearly, the limited time thus available for peer testing, quality assurance should

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

7

also rely on unit test functionality. As such, it is proposed that we –in parallel- maintain a test

application/ console which can be run unattended and logs the status of the various modules and

functionality.

So, ultimately, part of the development process, each of the developers is asked to maintain a

minimal technical documentation, a test environment for the API including a minimal test plan (what

it should and what it should not do), and a section of the test plan specifically for the GUI (written

together with the principal GUI developer) once the GUI exposes the functionality.

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

8

3 Requirements specification

3.1 Software functionality
Given that the MaSeLMa GUI, the APIs of the MaSeLMa and ProSeLo projects, as well as the

MaSeLMaBridge Interface providing access to SPMS are built upon, the reader is referred to the

extensive documentation for those projects. There is explicit demand for a graphical interface

showing the degradation as a function of usage, the predicted failure/ JIT preventive maintenance

moments as well as the scheduled maintenance moment timeline.

The starting point of the extensions of the software functionality is the set of use cases of the three

pilot companies in the maritime sector. We seek to generalize the functionality to allow users in that

particular sector but also in other sectors to also use the application. After discussing the tactical

planning with the pilot companies, we discerned two cases:

1. Decide whether to swap two assets of location to postpone/ advance maintenance to a

particular time interval of interest. In general terms: attune the tasks (where tasks are tied to

a particular location) in operating schedules. As such, the scheduler has to be able to

determine to which asset to assign particular tasks.

2. Attune when to switch on and off particular redundant components of one single asset to

postpone/ advance maintenance to a particular time interval of interest. The scheduler has

to be able to swap which components are on/ off. Clearly, some of the components in the

pool of redundant components have to be ‘on’.

In both cases, there is a cross-check for spare part availability, delivery expenses taken into account,

and a potential list of spare part related orders is generated.

The Scope section (2.1) provides our generalization of the software functionality.

3.2 Usage/ usage context
After extensive talks with the pilot customers, we discern several requirements, each of which has

quite a different usage and usage context.

3.2.1 “Insight in sensibility of tactical asset rescheduling”
For one of the pilot customers, the primary goal is to get insight as to whether particular tactical

asset planning scenarios are sensible at all. If so, then that particular customer seeks to further

optimize the planning. However, for this particular customer, that one particular decision is a

relatively infrequent one to make, for instance when new assets are added to the pool or a new

scheduling problem with an alternative set of assets is considered. For example, the customer

decides to start planning a (new) set of (new) vessels in a (previously not considered) context.

3.2.2 “Optimization of tactical asset rescheduling”
The idea is that rescheduling the usage of assets does affect the degradation rates and hence when

maintenance is required. As such, rescheduling allows the customer to tune the maintenance

moment to, for instance, align with low cost intervals in time (e.g. a vessel has to be docked for

mandatory survey; a machine has to undergo major overhaul) or ensure availability of one or more

assets during particular intervals in time (e.g. a vessel is used for a mission; a machine is scheduled to

perform a printing job with a tight deadline).

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

9

The customer wants to be able to specify such ‘intervals’ and then have the application determine

whether any asset rescheduling tactic is available and, if so, provide the customer with a viable or

even the optimal asset rescheduling plan.

The customer will run this analysis when (1) new condition information becomes available on any of

the components of the assets considered for rescheduling and particularly when this changes the

estimated degradation rate, (2) any of the low-cost or availability intervals changes, (3) the asset pool

or assets considered changes.

3.2.3 “Determine usage pattern of (redundant) components”
For two of the pilot customers, the primary goal is to control the usage of (some of the) redundant

components such as to tune when these components are to be maintained. There are several

scenarios conceivable: maintenance on the set (or a subset) of redundant components has to be:

1. ‘sufficiently far apart’ (or rather ‘sufficiently close together’, which can be achieved by using

some components considerably more than others at least during a particular interval or use

them in equal fashion,

2. advanced/ postponed to fall within a designated (low-cost) interval or rather to fall outside

of a designated ‘availability-required’ interval.

3.2.4 When to use either one of the two functions of the scheduler?
Apart from the reasons mentioned above (targeted interval changes, trend breaking condition data

arrives, asset pool changes, new problem considered), circumstances may call for running the

scheduler again, e.g. when there is an unplanned opportunity for maintenance, for instance because

maintenance on another component not part of the project is required, or when there is an

unplanned failure which may require maintenance (but perhaps postponing is viable?). Table 1

provides an overview of when the customer is to rerun the tactical scheduler.

 Table 1. In which occasions is the customer required to rerun the tactical scheduler?

 Target
interval for
maintenance
changes

Trend
breaking
condition
data

Unplanned
maintenance
opportunity

Sudden
failure which
may require
maintenance

Asset
pool
changes

New asset
scheduling
problem
considered

“Insight in
sensibility of
tactical asset
rescheduling”

X X X

“Optimization
of tactical asset
rescheduling”

X X X X X ?

“Determine
usage pattern
of (redundant)
components”

X X X X

3.2.5 Enhanced component degradation simulator
In addition to scheduling functionality, the requirements of the customer require enhancement of

the component degradation simulation. In the maritime sector applications, for instance, the engine

is treated as a single component and different criteria are used to determine when to conduct

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

10

maintenance: for some engines this is the cumulative number of liters of fuel used, while for others it

is the total running hours (regardless of power or RPM).

In addition to the dimension of the condition variable, the simulation requires additional factors such

as location (as a multiplier for the number of running hours) and season (as a multiplier on the fuel

consumption).

Additional exploratory discussions with the pilot customers are required to provide details on the

simulator.

3.3 Interface specification
At the outset it has been decided by the development team + project manager as well as per request

of the pilot companies that the existing MaSeLMa GUI would be revamped. There are relatively few

concrete demands from the pilot customers with regard to extensions of/ changes to the GUI. That

said, for the pilot customers, particularly the visualization of the degradation curves of components

as well as the maintenance activities on a timeline are critical. During the first stage of the

development process, the focus is on evaluation of/ insight in scenarios and whether tactical

planning is sensible. In the second stage of the development process, it is requested to (i) implement

actual condition observations and usage data and (ii) concretely implement tactical optimization.

As described in the next chapter, given that the scheduler needs to be able to handle a pool of assets

(rather than just one as before), it is opted to go for a repository for assets and a repository of

components (with observation dataset associated) for quick system building across assets as well as

central collection of data for enhance degradation/ usage estimation.

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

11

4 Design specification

4.1 Architecture
At the highest level, the architecture of the IMOLA solution is straight forward, see Figure 2. At the

core of the architecture are the tactical usage & deployment scheduler and the operational

maintenance planning engines of two APIs. The MaSeLMa API determines maintenance schedules

for usage regimes with multiple operating modes and their associated degradation distributions,

maintenance cost and maintenance options (as e.g. is the case in the maritime sector). The more

specific ProSeLo API determines maintenance schedules for usage regimes with a single operating

mode and single usage rate and maintenance costs (as e.g. in manufacturing). At the technical level,

both have different approaches, each with advantages. However, an abstraction layer is to uniform

the interface access, which -at the operational level- basically requires also providing a conversion &

communication wrapper around the ProSeLo API. The IMOLA application thus allows passing input as

well as presenting & visualization of the ProSeLo output.

Figure 2. Overview of modules in the novel architecture, most importantly now also featuring the
ProSeLo engine

Company-specific data is extracted/ processed externally, possibly with a separate processing tool or

using company-specific ERP modules, and imported into the scheduling project in the GUI. Although

technically feasible, there probably is too little time to integrate data extraction into the GUI such

that the need of external tools is not required. Note that one of the pilot companies indicated that

this would be highly preferable in the mid-long term so as not to mothball the application for being

not user-friendly.

With regard to the spare part planning, we stick with the structure of the MaSeLMaBridge solution,

which means that spare part scheduling is a multistep, iterative process of exporting a provisional

maintenance schedule, importing that into & running the integration tool to determine spare part

deliveries and associated cost vectors, exporting that, then importing into and running the

maintenance scheduler again. This is rather tedious and particularly now that we are going to

aggregate maintenance scheduling to an asset pool (e.g. fleet level), we should consider handling

inventory optimization and automated ways to communicate with the spare part management

studio in future updates.

At a lower level, the architecture becomes a bit more involved, particularly due to a (functional)

separation of data (handling) and scheduling project (handling). This is a novel concept introduced in

the tactical planner to ensure that the same types of components used in different assets can benefit

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

12

from data collected on any of them by re-estimating parameters. In addition to that, the MaSeLMa

application required adding the cost specs, condition data, condition degradation specs, etc. to be

added in each project (so every time one creates a new project). Now, this all stored in a database

and can be added by point-and-click in any new project. Related to that, it may very well be that

scheduling projects may contain different sets of assets, and simply adding them in a point-and-click

(or drag-and-drop) style is much more user friendly. As such, we propose to programmatically

separate scheduling functionality for a single project and data-handling functionality tuned to handle

data across multiple projects. Consequently, as soon as new data is added, such as e.g. condition

data, and new parameter values are determined, all scheduling projects using that data can be

further enhanced. Given that the naming of and the specifications of the functionalities are the same

as those in the MaSeLMa and MaSeLMaBridge projects, we simply provide a layer diagram of the

functional components and modules in Figure 3 without extensive description.

Figure 3. Layer diagram of top-level functionality and modules (and data sources) of the tactical

scheduler application

Each of the more involved modules (i.e. the functionality boxes with a two-line compound type)

requires further explanation. As the (ideas behind the) resource planning and data analysis/

parameter estimation functionality has not changed substantially since MaSeLMa(Bridge), we omit a

visual representation and further description here.

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

13

The scheduling module is rather straight forward an input/output data conversion and asynchronicity

handler to call the tactical planner functionalities for component usage or asset deployment

scheduling, which, in turn, (iteratively) call the operational scheduler, see Figure 4. An alternative

design would be to treat the penalty-based Genetic Programming scheduler as just an alternative

scheduling method just as the ADP, L10, JIT and the many flavors of cost-based or rule-based

rescheduling heuristics (such as implemented in older versions of the MaSeLMA application). The

design would then become as what is contained in Figure 5.

Figure 4. Layer diagram of the scheduling module

including tactical usage & deployment and
operational maintenance scheduling with tactical

planning integrated into the ProSeLo API

Figure 5. Alternative design for the
scheduling module in which the aggregation
across Python and C# functionality occurs at
the operational rather than tactical level. In
this case, the ProSeLo API would not
integrate tactical planning.

At the moment of writing, there is an exploratory study of changes to the penalty-based scheduler

for tactical planning. This study should help the development team + project manager to decide

between the two designs.

4.2 Deployment viewpoint/ user environment
At this point in time, we only have a few pilot customers to consider, but the environment seems to

be quite generic. One exception may be DMI/ RNLN which may prohibit access to data servers from

our application.

In the simplest form, the user adds all input in the GUI manually and, depending on whether it is

project specific, the data is stored in a scheduling project in the project directory specified by the

user or the data is stored in a (local) data lake. More advanced would be to collect, import and

convert the current data upon opening the scheduling application in an automatic and unattended

way. At present this is considered out of scope of the IMOLA project. There may be unique workflows

depending on the company specific ERP system and data management software packages. The

startup to be established could/ should consider writing the data bus/ pump code part of the

Software-as-Service business model. Also see the use case described below.

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

14

4.3 Main use cases and flow-of-events
We identified the following main use cases:

1. Maintenance of the asset and component repositories

2. Maintenance of the scheduling project; nota bene assets and components per asset included

3. Conduct tactical asset pool scheduling (APS)

4. Conduct tactical redundant component usage scheduling (CUS)

5. Import & process external data

4.3.1 Maintenance of the asset and component repositories
The main flow for this use case requires the application to be started, but does not need (but may

have) a scheduling project open. The system provides the user the opportunity to edit either (1)

repository of components or (2) the repository of assets, and edit the specifications of each of those

components/ assets.

Editing the component repository

The application maintains a stand-alone repository of components which is not tied to a single asset

or single project, notably because particular components are used in several assets. The condition,

operating, and maintenance data is stored by the application in a (local) data lake and associated

with the particular component ID. One subflow has the user to add, edit, and delete this component-

level condition data, as well as registration of actual maintenance activities. Another subflow

concerns estimation of degradation parameters from condition data.

The user can create or remove a component from the repository. Upon creating a component, the

user is prompted to add specifications w.r.t. usage / degradation behavior (name of the variable,

distribution type, initial parameters) and defining when (i.e. which level of the variable) maintenance

is required. The user can manually specify degradation parameters, but also add condition and

operating observations to estimate them automatically.

Components are simple classes with a degradation rate that depends on (i) operating mode, (ii)

‘season’, and (iii) ‘location’ (where both are categories/ labels). The user is able to set the base-rates

for degradation for each of the operating modes as well as the ‘season’ and ‘location’ multipliers.

However, the user can also import degradation condition data and an historical operating schedule

(including season and location) and allow the estimation of the base-rate as well as the season and

location multipliers. In addition to that, the user can specify whether to automatically include a fixed

effect variable for each individual asset to which the component is added.

Editing the asset repository

The application maintains a repository of assets not tied to any project, but each asset is associated

with an array of components from the component repository.

The user can create or remove assets from the repository. Upon creation of an asset, it is

automatically added to the repository. The user has to specify an own ID/ name for reference in

projects. The user may specify a “commission date” and a “mandatory survey regime”. Although this

is rather specific for the maritime sector,

The user may associate (instances of the) components with the asset, which are stored as references

rather than hard-copies to ensure using up-to-date data each time the asset is used.

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

15

4.3.2 Maintenance of the scheduling project
Main flow: this use case begins with the user opening/ creating a scheduling project. Unlike in the

MaSeLMa project, creating a scheduling project requires adding assets only, no asset or component

level information needs to be specified as this has already been done in creating the component and

asset repositories.

In an open project, the application offers the following options to the user, each described in a

subflow below:

1) creating, opening a project,

2) editing the tactical asset pool of the project,

3) editing the component portfolio of one of more assets,

4) manage component specifications (to be decided)

5) editing the operating schedule template

Creating, opening a project

Currently, the application allows only a single project to be open, such that this subflow starts with

the application without any project open. Upon creation of a project by selecting a menu item or

pressing the button on the bar, the user is prompted to provide a title. Editing the project itself is

handled in other subflows.

Note: upon opening a previously created project, the user gets a warning if anything has changed in

the asset or component data of the project since the last time it was open, e.g. observations or

maintenance actions of any of the components in an asset have been edited, or the list of

components associated with an asset has been edited. Note that such a change can be either in the

repository editing subflow or in another project if we decide to provide functionality to edit those

aspects of components.

Edit the asset pool of the project

The application shows a list of the assets contained in the scheduler’s repository and offers the

opportunity to add and remove assets (e.g. vessels, printers) from the pool (e.g. fleet, machine array).

We may decide to add an option to allow the user to maintain the asset repository here.

Edit the component portfolio of an asset

Upon selecting an asset, the application enables functionality (enabling a button and menu option)

for the user to include/ exclude components associated with the scheduling project. This simply is a

checkbox for each of the components, but this will not effectively change the component portfolio of

the asset. Note that at this level, the user is not allowed to add / remove components from the asset

as this may break/ change other scheduling projects. Note that we may decide to allow it but then

throw a warning of which projects will be affected (and also show a warning once such an affected

project is opened).

Manage component specifications

It is yet to be decided whether we seek to allow managing component specifications also from a

project or rather relegate that to the component repository handler. Moreover, if we allow the user

to maintain the component specifications, we may also decide to add an option to allow the user to

maintain the component repository from here.

Edit the operating schedule template

In each project, the user may specify an operating schedule template for each component. For the

traditional notion of an operating schedule, please check MaSeLMa documentation. In contrast to

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

16

the MaSeLMa operating schedule concept, the user can now indicate whether actual usage of a

component during an operating interval may be altered by the component usage scheduler (see

below). If so, the base-level degradation rate is that of the operating mode, but whether or not the

component is actually used is yet to be set by the usage scheduler. If the user specifies that the usage

of the component is not allowed to be changed by the component usage scheduler, the component

is by definition degrading at the base-level rate.

4.3.3 Conduct tactical (redundant) component usage scheduling
If a single asset is selected, the application enables the user to:

1) select a set of (redundant) components,

2) specify one or more ‘target intervals’ for each of the components during which maintenance

is sought to occur, and

3) run the redundant component usage scheduler (CUS) to determine a pattern how to use

each of the components.

See the use case diagram below. Design technically, it is to be noted that the design currently

ensures that the user can only select components from one and the same, single asset. Moreover,

technically, the user has to select one or more intervals for each component.

Figure 6. Use case diagram for component usage scheduling

If some of the components selected are indeed redundant, the user can specify how many of each

set of redundant components are allowed to be turned off per period.

4.3.4 Conduct tactical asset pool scheduling
The asset pool scheduler (APS) advances/ postpones maintenance actions for target components to

fall within particular designated intervals by manipulating asset-level properties (typically the

operating schedule). The typical flow of events is that the user:

1) selects a set of assets from the asset list of the project,

2) selects one or more components from each asset,

3) selects designated intervals for each of the selected components during which maintenance

is to occur1,

4) executes the asset pool scheduler (APS) which will look for “swapping moments” at which

assets will actually start to follow the operating schedule of the asset it swapped with.

1
 In the MaSeLMaBridge demonstrator, the intervals were derived from the asset commission date following a

mandatory survey regime. We may decide that the designated maintenance intervals are again so restrictive
rather than allowing picking intervals for each component. However, the user may find it confusing that
targeted maintenance intervals are to be picked in case of the component usage scheduler but not in case of
the asset pool scheduler.

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

17

See the use case diagram below.

Figure 7. Use case diagram for asset pool scheduling

Somewhat problematic in the current design is that the user may select multiple or different types of

components in the various selected asset. Moreover, it is ambiguous what the user wants with the

target intervals for maintenance: simply that at least one but preferably more maintenance actions

coincide with targeted intervals? Or that the first maintenance action coincides with a target interval?

4.3.5 Import external data
In the component repository handler (dialog), the user can import external data. As the functionality

under the hood may well be highly specific, we need to discuss the viability of this solution. For the

pilot companies, we can of course provide custom functionality. Arguably, this functionality is part of

the Software as Service business model and we may design a module strategy to decouple custom

code from the application (e.g. having a universal DLL interface while we build separate DLLs for each

of the customers using specific compilation flags).

4.4 Design technical changes

4.4.1 Separation of concerns into two modules in the MaSeLMa API
In the current MaSeLMa API, all component specs, degradation distribution specifications, and

condition data are part of a planning project. However, the requirement to handle planning across

different assets (“fleet level”) each with the same type of component as well as planning of usage for

(redundant) components calls for maintaining a data lake outside of any particular project. As such,

different projects simply have access to the same asset and component specifications. Program-

technically, this also allows for the separation of concerns and two different main modules in the API

(see Figure 3)

4.4.2 Revise three-application solution for resource planning?
Currently, the integration with SPMS through an Access interface is rather inconvenient and requires

several manual actions of exporting and importing data using Open and Save File dialogs. This three-

application solution for the resource planning (spare part availability check, cost determination, etc)

is fairly tedious for customers. Although out of scope for now, if we find additional time or resources,

we should reconsider this, particularly now that we are moving in the direction of an asset pool (so

all assets for which inventory management is to be done are known) and a ‘stand-alone module’ for

management of the data lake.

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

18

Inventory optimization typically is something the OEM does to serve the customer base. For asset

owners also doing maintenance, our decision to offer ‘capital asset pool’ management (e.g. fleet), it

may be convenient to handle inventory optimization also to the GUI. The OEM could/ should then

abstract away from individual spare part events at the customer, but look at customer demand.

Moreover, we should see whether we can automate this for unattended processing by having the

application access the data on a customers’ server.

4.4.3 Operating mode issues: user-own operating mode labels, consider tasks, add flags
Now that the application is designed for use in other sectors, it is required that the user can set the

labels for operating modes. In addition to that, a ‘flag’ is required for each of the intervals in the

operating schedule specifying whether or not the usage scheduler is allowed to change the pattern of

usage.

4.4.4 Integrate and enhance tactical planning
At present, both the ‘swapping’ scheduler as well as the ‘usage pattern’ planner run in a stand-alone

console tool merely using the JIT maintenance scheduler and outputting a MaSeLMa project that can

be opened in the MaSeLMa GUI. Moreover, the tactical planner simply uses a numerical procedure

with bisection search to go over the asset swapping moment (basically changing the operating

schedules each of the assets follow) as well as the usage patterns. Both are rather ad-hoc.

In the IMOLA project, the following changes are implemented:

1. The tactical scheduling routine is integrated into the MaSeLMA API and placed in a layer just

above the operational scheduler (see Figure 3)

2. In terms of functionality the following adjustments are required:

a. the asset pool scheduler should be generalized for more than 2 assets

b. the component usage scheduler should be able to work with more than 2

components and should use only intervals that are flagged as ‘adjustable’.

The general approach currently sought is a ‘multilayered design’ in which the tactical planner simply

uses the operational planner to ask for maintenance moments. The tactical planner uses a heuristic

to search over multiple operational schedules and picks the most suitable one.

Clearly, given the considerable and non-linearly increasing running time, this is suitable only in case

of a low number of components and/ or low number of assets. The asset pool scheduler has

theoretically n! * t combinations (with n the number of assets involved in the swapping and t the

number of periods). Similarly, if m out of n components are to be “on”, the usage scheduling problem

has n! / (m! (n – m)!) * t combinations. In practice, the number of assets in the APS and number of

redundant components in the CUS solvers are expected to be in the order of 2 to 5.

In addition to that, to speed up the search processes, we may seek to limit the degradation

distributions allowed and particularly focus on JIT or L10 scheduling, thus basically ignoring clustering

and opportunistic maintenance. Note that the MaSeLMa API does also simply allow evaluation of

costs and availability for a given operational maintenance schedule, such that a design for the tactical

scheduler that builds and evaluates operational maintenance schedules can be very fast (say, in a

matter of a few second to several minutes).

4.4.5 Obtaining external data
Given the considerable number of tedious manual actions required to add operating schedule, usage

data, etc., it is commendable to use the pilot to study implementing direct data pipes to server

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

19

sources/ ERP system for unattended processing. As said above, this is out of scope for IMOLA, but we

should make notes on options when deliberating with customers so as to provide

4.4.6 Extension & integration of ProSeLo API
The ProSeLo API offers a fast heuristic for maintenance scheduling capable of handling considerable

numbers of components but has basically 1 operation mode, deterministic degradation and no

maintenance cost considerations. At present, we seek to integrate the ProSeLo API as separate

module into the MaSeLMa API and offer access to functionality through and displaying output in the

MaSeLMA GUI. Clearly, this requires conversion of input data for and access to ProSeLo API

functionality, and conversion of output data for further visualization and storage in the scheduling

project.

In terms of functionality, similar to the MaSeLMa API, the ProSeLo API requires redesign for a ‘multi’

asset setup as well as a way to “throttle” usage of assets. There is no redundancy of particular

components in these assets yet (neither foreseen in high tech sector), so whether or not the usage

pattern scheduler is to be implemented remains to be discussed. If we decide to provide usage

scheduling also in the ProSeLo API, the daily usage should be changed from 1 [on] or 0 [off] to a value

somewhere in [0,1].

In addition to this, also the ProSeLo API needs to be adjusted to have spare parts availability checks,

notably by using the supply cost vector (with costs associated with emergency, regular delivery) into

account in planning.

4.5 Data structure design
Here we discuss when the user is required to manually handle data input or output, where particular

data is stored (and we thereby distinguish the repositories in the data lake from the data stored in

scheduling projects), and the data pass-throughs that need to be made.

4.5.1 Human actions for data in-/ output
There are four phases in which human interaction is foreseen:

1. Initialization of the application / editing the repository

a. Edit the asset pool

b. Edit the component repository

c. Editing the list of operating modes

2. Creating/ editing a project to reschedule assets or usage patterns

a. Adding/ removing/ editing assets from a project

b. Adding/ removing/ editing components to/ from assets

c. Editing operating schedules for assets

d. Specifying other degradation factors (season, locality)

3. Exporting/ importing/ manually adding or removing condition data, maintenance actions, etc.

to/ from the data. Ideally, degradation curves are determined unattended and parameter

values automatically updated.

4. Exporting the maintenance schedule/ dashboard summaries for further processing

Typically, either one or more of these human actions are required upon the occurrence of one or

more of the events in Table 1.

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

20

4.5.2 Data lake
The following data has to be kept in a data lake (which is, for now, a local repository, particularly

taking into account the strict security requirements of DMI/ RNLN):

1. Component specifications, notably degradation distribution, and including manually specified

parameters, references to condition time series & maintenance activities per asset,

estimated degradation parameters

2. Asset specifications, notably the list of components associated with the asset

4.5.3 Scheduling project
Each scheduling project contains:

1. References to assets, and, for each asset, a list of references to components involved in the

project,

2. For each asset in a project ‘targeted maintenance intervals’ (e.g. a period of time in which

mandatory inspection is required)

3. An operating schedule for each asset, whereby each operating schedule contains a flag

specifying whether it is ‘adjustable’ by the usage pattern scheduler

The project could/ should allow both types of tactical schedulers, e.g. by selecting a (sub)set of assets

and selecting/defining an interval for each asset and then pressing ‘asset pool scheduling’, and e.g.

selecting a (sub)set of redundant components and selecting/ defining an interval for each component,

and pressing ‘component usage scheduling’.

4.5.4 Pass-through
See the section on Design Technical Challenges. In sum:

1. Data conversion and pipes to/ from SPMS remain unchanged

2. A data interface has to be designed for ProSeLo API

3. A data collection tool may have to be designed to collect condition, usage data, etc. from

company databases.

4.6 User Interface Design
Although the basic framework for the GUI and the underlying scheduling project structure is in place,

the progressive aggregation from purely operational maintenance planning to tactical maintenance

& asset management planning requires introducing several new elements across virtually all top-level

libraries and certainly several considerable changes to the GUI.

First of all, the GUI is to offer a “repository dialog” in which the user can add/ remove assets to/ from

the asset repository, add/ remove components to/ from the component repository, and allow

adding/ removing associations of components from that repository to a selected asset.

Secondly, the GUI is to offer a list in that “repository dialog” or a stand-alone dialog in which

condition observations of (together with operating information) and maintenance activities of

components in particular assets are stored. This information is then to be used in the estimation of

the degradation distribution parameters.

Thirdly, the current project view needs certain alterations. Notably, each project may now contain

multiple assets and each asset contains several components. The subsystem part of the GUI may be

used for assets. Part of the data handling for components needs to be moved.

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

21

Fourthly, the maintenance timeline view is to offer options to specify and select “target intervals” on

the timeline of individual components for usage in the component usage scheduler (CUS). In

collaboration with the pilot companies, we have to decide how the user can specify ‘target intervals’.

A particularly interesting option is to simply add ‘blocks’ to the maintenance scheduling interval,

comparable to the mandatory survey intervals in the MaSeLMABridge implementation, and allow the

user to double click such a ‘block’ to in/exclude it.

Fifthly, it has been opted to provide a dashboard to represent scheduling information in a more

human comprehensible way and to provide a quick summary of what is required of the customer in

terms of decisions.

4.7 Class Diagrams
TO DO: SPECIFY WHY / WHICH PART OF ENGINE IS DESCRIBED HERE..

4.8 Use Case Realizations: concurrency
Looking at the use cases and picturing several functions to be called under the hood (e.g. for

scheduling), there are several concurrency issues:

1. The Approximate Dynamic Programming MaSeLMa scheduler runs a pool of worker threads.

Access to the MaSeLMa API is not yet disallowed during the ADP scheduling process. With

customers going to use the application, we have to lock the API without stalling updating of

the GUI.

2. Communication with the Python penalty scheduler is asynchronous. It may even be executed

through system calls such that a polling thread is to be setup to monitor for output.

3. Communication with SPMS through the integration interface is arguably tedious for

customers. As mentioned above, since the new GUI is going to host the full asset pool,

further integration of inventory optimization is to be consider (but out of scope for the short

IMOLA project).

Software Development Plan for the IMOLA application for tactical planning of maintenance, integrated with logistics

22

4. Retrieving and processing external data, notably usage, maintenance and condition data. It is

likely that an external tool is to be used to extract, convert and prepare the data for import.

It is undesirable that data is extracted each and every run of the MaSeLMa GUI. Note that we

can ask the customer to press an “update” button in the GUI, but the data will be added to

the application’s data lake gradually after which

a. the components’ degradation information repositories need updating

b. the dashboard should give a warning of trend breaks or maintenance actions

requiring rerunning either one of the tactical planners.

For (1), the worker thread pool is in place and sending back an event once done. This easily allows

locking the API and/or blocking GUI access (e.g. through modal dialog). For (2), we need to design a

technical solution on how to lock the API and/ or block GUI access. This can be an easy solution such

as a monitor thread polling the existence of an output file produced by the Python API.

For (3) and (4), the concurrency issues are at stake in peripheral processes started by the user and in

part outside of the GUI. With the current design there is no ‘neat’ solution just yet. However, the

user is aware at all time of whether all required data has already been retrieved.

